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Abstract—The problem of rupture of a thin liquid film flowing down a vertical surface is considered.

This rupture into rivulets is assumed to occur when both the continuous film and the rivulets carry the

same mass flow and total (surface plus kinetic) energy and when, moreover, the latter exhibits in the

rivulet configuration a local minimum. From the resulting theory, an earlier theory by Hobler can be

retrieved as a special case. Calculations are performed for a gravity driven film and results are compared
with several earlier theories.

NOMENCLATURE
e, specific energy per unit width;
E, energy;
f(6o), function defined by equation (18);

h, film thickness;

h, dimensionless film thickness;
m, mass flow rate;

pL,  pressure in liquid phase;

P, pressure in vapor phase;

R, radius of rivulet surface;

w, velocity;

x,y, coordinates;

X, ratio of wetted to total surface.

Greek symbols

6o,  contact angle;
A film width;

I viscosity;

2 density;

c surface tension;

W(0o), function defined by equation (20).

Subscripts
£ film;
riv,  rivulet;
55, liquid-solid interface;
19, liquid—vapor interface;
g, solid—-vapor interface.

INTRODUCTION

THE CONDITIONS under which a thin liquid film, driven
along a solid surface by gravity or by shear stresses
applied at the “free” surface, breaks down into a series
of rivulets, leaving the solid surface partially exposed,
are of great importance in a number of technical
applications. Among them are distillation and other
direct-contact processes and equipment. The problems
of liquid film breakdown are closely related to the dry
patch formation on heated surfaces, which is of im-
portance in safety studies of nuclear reactors cooled
either by liquid metal or by water. The appearance of

*Polish Academy of Science, Institute for Fluid Flow
Machines, Gdansk, Poland.
tUniversity of Delaware, Newark, DE 19711, U.S.A.

HMT Vol. 19, No. 7—E

the boiling crisis in a flow situation is related to the
conditions of maintenance of a continuous liquid film
on the heated surface. Of more immediate interest to
the present authors are the implications with respect to
liquid flow on the surfaces of stator blades of the last
few stages of very large steam turbines. Here, the
existence of a continuous film or its breakdown into
rivulets is of central importance in the problem of liquid
removal from the surface by evaporation. Such re-
moval, by using hot steam on the inside of hollow stator
blades, would minimize the danger of large droplets
forming from the film near the trailing edge of the stator
blade. This in turn would reduce subsequent erosion
damage to the rotor blades [1-3]. The problem of
evaporation of such a film involves estimating condi-
tions for the breakdown of the film into rivulets.

The problem of stability of a liquid film has been
the subject of many analytical investigations based on
the classical linear stability theory [4-10].* These
investigations yield conditions for the growth of small
disturbances in the film and on its surface. They cannot
be expected to provide information concerning the
actual conditions under which rivulets appear or the
detailed mechanism involved in the film breakdown.
This is due to at least two factors, the first being that
when a disturbance grows sufficiently to present a real
danger of film breakdown, it is very unlikely that a
linear theory will continue to offer an adequate descrip-
tion. The second, and more important difficulty, is that
a very important parameter of the physical phenom-
enon, namely the contact angle does not enter the
theory at all.

Another approach to the problem of breakdown of
thin films and subsequent rewetting, or stability of the
dry patch, has been offered initially by Hartley and
Murgatroyd [11] who investigated the equilibrium of
forces acting at the stagnation point of a film, which
point also constitutes the beginning of a dry patch in
the film. They also offered an alternate criterion based
on the assumption that a stable film configuration
corresponds to a minimum power transmission by the
film in the form of kinetic and surface energy. This

*This listing is not intended to be complete but rather
to include the work of several independent groups.
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alternate criterion again suffers from the drawback that
it does not involve the contact angle and, further, the
basicassumption appears quite arbitrary. Both analyses
are concerned with the stability of the broken film
configuration. They yield the limiting thickness of an
unbroken film, from which the stable rivulet configur-
ation results.

Comparison of the force criterion with experiment
[12] indicated qualitative agreement but required the
use of unrealistic contact angles in the theory if satis-
factory quantitative agreement were to be achieved.
Subsequent developments of the Hartley and Murga-
troyd theory [13-15] were aimed at the effects of shear
and form-drag forces, non-uniform temperature dis-
tribution on the film surface, and the added pressure
caused by the thrust of evaporating molecules.

An approach somewhat similar to the minimum
power criterion of [12] but with a firmer theoretical
basis was adopted by Hobler [16]. He considered the
total (kinetic plus surface) energy contained in a given
streamwise length of broken film. If in this configur-
ation the total energy exhibits a local minimum Hobler
concludes that the film will break. If the broken con-
figuration exhibits no energy minimum the conclusion
is that the continuous film is stable. The theory has
been compared with experiments [ 17, 18] and has been
extended to films exposed to centrifugal force fields
[19]. The theory does account for the effect of the
contact angle but offers no information concerning the
geometry or spacing of the rivulets resulting from the
film break-up.

More recently Bankoff [20] formulated a criterion
for the formation of rivulets in the shape of segments
of a circle. He assumed equality of the mass flow and
total energy in the film and rivulet configuration and
further assumed effectively that rivulets can form ad-
jacent to each other with no intervening dry surface.
It is not difficult to show that these conditions cannot
be simultaneously satisfied and therefore one would
expect his theory not to yield any minimum stable
film thickness values. The fact that the author did
obtain numerical results, albeit inexplicably low ones,
is due to a numerical error in his equation (15). If the
error is removed imaginary minimum film thicknesses
result from Bankoff’s theory, as might be expected.

The present work offers yet another approach to the
problem enlarging on the ideas of both Hobler and
Bankoff. Following Bankoff we consider the film to
break up into rivulets in the shape of segments of a
circle, consistent with a uniform surface tension. It is
assumed, however, that the rivulet has a base narrower
than the uniform unbroken film thus allowing a dry
space between adjoining rivulets. The ratio X of the
rivulet base, to the corresponding undisturbed film
width represents a basic variable in the Hobler ap-
proach. Further following Bankoff, the energy in the
unbroken film and the broken-film configuration are
assumed equal. Finally, the energy of the broken-film
configurations is required to have a minimum for
X < 1, as proposed by Hobler, if the configuration is
to be stable.

In this manner it is possible to calculate not only
the minimum thickness of the stable film, but also the
radius of curvature and initial spacing of the rivulets
resulting from the break-up of the film.

ANALYSIS

We consider a homogeneous liquid film of uniform
thickness h flowing down a vertical plane. The flow is
assumed to be fully developed and laminar with the
velocity given by w(y). The mechanical energy of the
film consists of the kinetic energy of the fluid in the
film together with the surface energies associated with
the solid-liquid interface and the “free” surface. Per
unit length of film streamwise and for a width 4 of the
film this energy is given by

h
Ef=[J ng(y)dy-*-ffsrmfg} (1
[0

and per unit width of the film
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Similarly the mass flow per unit width of the film is

given by

. h
% = j pw(y)dy. 3)
d 0

Let us now consider the same flow in the form of
rivulets. The radius of curvature of the rivulet surface

is determined by the equation

g
PL'—'PU:E. (4)

On a vertical surface P, does not vary across the rivulet
and P, is also constant. If ¢ is also considered constant,
which is consistent with uniform temperature, then R
is constant and the cross-section of the rivulet forms a
segment of a circle, subtending at the center an angle
of 280, where 0, is the contact angle. Let us consider
next the cross-section of the rivulet divided into narrow
strips of width dx and height h(x). The velocity profile
in such a strip is assumed to be the same as the profile
in a uniform film of the same thickness h(x).

The mass flow per unit width of the original film is

given by

. v 2 Rsinflo {"h(x)

mi =z J J pw(x, y)dx dy. (5)
}- ] 0

When the film breaks, the mass flow intensities given
by equations (3) and (5) are equal which upon intro-
duction of
h(x) = R(cosf—cosfy) 0 < x < Rsinby
0<0<b,

(6)

yields a relationship between the rivulet radius R and
the critical film thickness ho. The total energy of a
rivulet and associated dry surface may be written

*Rsinfy ["h(x) p
E. = [2J J 5 wi(x, y)dydx

0 0
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Minimum thickness of liquid film

From the equilibrium of the surface tension forces at
the point of contact of the three phases

Osg = Ops+0rc088,

@®
so that per unit width A of the original film

Eriv pJ‘Rsineo jh(x)
Eriv = =
A Ao 0

+ (Z‘?" )af,,mfs. ©)

Introducing the ratio of the surface wetted by the
rivulets to the total surface
2Rsinfg

A
&1, becomes a function of X.

The rivulet is stable if its total energy ey, is 2
minimum at X = X,

wi(x, y)dxdy

Rsin 26,
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(10)
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while at the same time
er=¢en; Xo<l (12)

Equations(11) and (12) determine the minimum critical
film thickness and the corresponding value of X, while
the equality of mass flow yields the rivulet radius R
and, finally, the spacing . In the subsequent section
the above method is applied to a laminar free-falling
film.

THE LAMINAR GRAVITY-DRIVEN FILM
ON A VERTICAL WALL

The velocity profile appropriate to this case is

_w(y_ .,
v =7 (2 yh) (13)
so that
lp _}’2 2
ey = J 2 [12 (2—“}’}3> dy+0'fg+(ffs
1
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and
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For the rivulet
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where

#o
fBo) = f {cos 8 —cos8,)° cos 8dB
0

42 cos By sin by
—%(90 sinz 60 +‘l§60. (18)

For the total energy of the rivulet and associated dry
surface one obtains from equations {7y and (8)

~
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For the mean energy per unit width there results

Eriv
6o
Xo'fg(gi;*é—; - CO8 60)

I
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Equating the mass flow per unit width of flow, given
by equations (15) and (17) one obtains for the critical

film condition
( h ‘)3
=

which upon substitution into equation (21) yields

B3 d"(g())
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If the rivulet configuration is to be stable the above
energy per unit width should exhibit 2 minimum at
X = Xo < 1. Thus differentiating equation (23) with
respect to X, equating to zero and solving for X

2 p%9® Y(0o) 'T” sinfo 4
X e _—
0= {45 #ia sy 5in (90 (sm 0, 6‘0) f(8o) 5"

2 y(fo) “HPsinbo, Ly
Sgg) hg
3 sin 0, \sin 90 Sf{6e)

*Equations for f(8) and §{f,) were given by Bankoff
{20], with an unfortunate arithmetic error in the latter. The
coefficient of cos® f; was given as 42. This leads to further
erroneous results referred to earlier in the paper.
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where the dimensionless critical film thickness hd is
defined by

3.2 13
hS :< p 29' h()‘
15;1 Org

Since also the total energy of the continuous film and
the rivulet configuration must be the same, comparison
of equations (14) and (23) yields upon substitution of
equation (24)

(25)

Py’
1510,

_ f'mpsgz 3;5hgx % 315<§
15;126!3 3 2

sin 6o |[W(0o) 1/ 6o \215
g [f(go)][sin OOJ (sin o - cos 90) (26)

or simply

hiS +(1—cos B) — GBo)hd ® = 0.

hg + (1 —cos )

(26a)

The dimensionless critical film thickness hg determined
by the above equation and the corresponding values
of X, as calculated from equation (24), are shown as
functions of the contact angle 6, in Fig. 1.

o i i 1 L H 1 1 1 s}
60° 80°

FiG. 1. Comparison of several film breakdown theories: (1)

present theory; {2) equation (27); (3) equation (29), Murga-

troyd force criterion; (4) equation (31), Hobler; (5) equation
(30), Murgatroyd power criterion; X, equation {24).

Further calculations can be performed for specific
fluids giving the critical film thickness ho, the radius
of the rivulets R from equation (22) and finally the
spacing of the rivulets A from equation (10).

It might be noted here that in the Hobler theory [16]
it is assumed that a film will break whenever a stable
rivulet can exist for X < 1. Here X is defined as the
ratio of wetted-to-total surface area, without specific

J. MixieLewicz and J. R, MOSZYNSK]

assumptions regarding the shape of the cross-section
of the rivulets. The critical film thickness is taken as
corresponding to X = 1. Thus from equation (24) there

results
—3 sin 60 ()0 15 f((_)o) 13
+_ |25l Yo b ,
" [2 w(o )(sin g "Oﬂ smoe| @D

These resuits are also plotted in Fig. 1.

Finally, if the result of comparing equations {14) and
(23} 1s left in terms of X and X is set equal to 1, the
Bankoff theory [20] results:

Bo - s$in 00

i ~5/3 "
sin {f (6"’] W (60)
sinfly.

With the correct form of y(fo) this yields no real
positive values of hi for any value of 8, between
0 and 90°. For comparison purposes we show also in
Fig. 1 the results of Hartley and Murgatroyd [11],
which when recast in the terminology of the present
paper take the form

his =

(28)

(29)
(30)

Force Criterion  hg = (1 —cos8)'/°

Power Criterion hg = 0.779.

The original theory of Hobler [16] may be expressed
in the form

hi = (3)"*(1 ~cos 60)'/*

which differs from equation (27) in that no account is
taken of the rivulet shape.

Gn

COMPARISON WITH EXPERIMENTAL DATA
Comparison of the present theory with available
experimental data on minimum film thickness tends to
be somewhat inconclusive. On the one hand there are
the data of Hobler et al. [18]. To the author’s knowl-
edge, they are the only ones including measured contact
angles. The comparison is reproduced below:

h*
Hobler Present
System f¢ Experimental theory theory
Water-aluminum  37.7 0.728 0.793 0.550
Water—glass 358 0.787 0777 0540
Water—copper 530 0.901 0802  0.660
Water-stainless
steel 36.3 0.900 0781  0.345
Water—varnish 56.8 0.977 0.925 0.680

On the other hand there are the data of Norman
and McIntyre [21]* and of Simon and Hsu [22]. Direct
comparison here is not possible since neither reference
includes the contact angle measurements. It is possible,
however, to deduce the contact angle required in the
theory in order to reproduce the experimental data.

*Reference [ 21] has been brought to the author’s attention
by one of the reviewers. This help is gratefully acknowledged.
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Thus:
6o
ho,exp Hobler Present
System (um) h¢ theory theory
Water-smooth copper 30°C [21] 136 0.365 6° 16°
Water-smooth copper 45°C [21] 104 0.314 5° 14°
Water-smooth copper 60°C [21] 0.224 3° 10°
Water-smooth copper 75°C [21] 0.255 4° 11°
Water—chromium plate 30°C [21] 137 0.367 6° 16°
Water—chromium plate 45°C [21] 115 0.344 6° 15°
Water—chromium plate 60°C [21] 0.324 5° 14°
Water-chromium plate 75°C [21] 0.292 5° 13°
Water—glass 27°C [22] 147 0.387 6° 19°

Thus it may be concluded that the present theory
predictions are uniformly too low by approximately a
factor of 1.5 with regard to the experimental results
of Hobler but show reasonable agreement with the
results of references [21] and [22]. In those latter cases,
use of more realistic values of 8o would lead to generally
too high predictions. This apparent inconsistency
points up the need for more systematic experimental

data.
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MINIMUM D’EPAISSEUR D’UN FILM LIQUIDE
S’ ECOULANT SUR UNE SURFACE VERTICALE

Résumé—On considére le probléme de la rupture d’un mince film liquide s’écoulant sur une surface

verticale. On suppose que le ruissellement se produit lorsque le film continu et les ruisselets issus de sa

division transportent la méme masse et la méme énergie totale (surfacique et cinétique) et que, de plus,

cette derniére présente dans la configuration du ruissellement un minimum local. La théorie 4 laquelle

on aboutit permet de retrouver comme cas particulier une théorie diie 8 Hobler. Les calculs sont effectués

pour un film liquide soumis & des forces de pesanteur et les résultats sont comparés a ceux de plusieurs
théories antérieures.
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MINIMALE DICKE EINES AUF EINER FESTEN OBERFLACHE
VERTIKAL ABLAUFENDEN FLUSSIGKEITSFILMS

Zusammenfassung—Es wird das Problem des Aufbrechens eines an einer vertikalen Oberfliche ablau-
fenden diinnen Fliissigkeitsfilms diskutiert. Dabei wird davon ausgegangen, dafl eine Bachbildung dann
eintritt, wenn sowohl der kontinuierliche Film wie die einzelnen Rinnsale denselben Massenstrom und
dieselbe Gesamtenergie (Oberflichenenergie + kinetische Energie) aufweisen und wenn auBerdem die
Gesamtenergie im Falle der Bachstromung ein lokales Minimum aufweist. Aus der heiraus gewonnenen
Theorie 1Bt sich eine frithere Theorie von Hobler als Spezialfall ableiten, Es werden Berechnungen fiir
schwerkraftkontrollierte Filme durchgefithrt und die Ergebnisse mit mehreren fritheren Theorien
verglichen.

MUHWUMAJBHASA TORUUHA TUIEHKH XHIKOCTH, CTEKAIOLIEN
[IC BEPTUKAJIBHOW TBEPHON MOBEPXHOCTU

AmmoTawnst — PaccMaTpHBaeTca 3alaua O paspuiBe TOHKON IUIEHKH XMIOKOCTH, cTeKaroluel no
BepTHKanbHOH mnoBepxHocTH. Ilpearnonaraercs, YTO NPH Pa3phIBE IVIEHKA M PYYEHKH COXPAHSIOT
ONMHAKOBBIE MaCCOBLIE PACXOALI H NOJIHBIE IOTOKH YHEPTHH (IIOBEPXHOCTHAS IUIIOC KMHETHYECKas).
KpomMe Toro, pydefixoBas reOMETpPHA XapaKTEpH3YETCS JIOKaJbHBIM MMHHMYMOM 3TOH SHEpPIHH.
Ha ocHoBaHuM mosiyueHHOH Teopuu Gontee paHHIO Teopuio Xo6aepa MOXKHO paccMaTpHBaTh Kak
YACTHbIH Ciiy4ail. BoiOHEHbI pacyeThl MNs IUICHKH KHAKOCTH, CTEKAIOWIEH 1101 OeHCTBUEM CHMIibl
TAXKECTH. Pe3ynbTaThl CPABHUBAIOTCH C HEKOTOPHIMH DAHEE NOAYYEHHBIME JAHHBIMH.



